LOWER RIO GRANDE REGIONAL FLOOD PLANNING GROUP MEETING

Agenda Item – Task 4C Technical Memorandum Update

March 9, 2022

AGENDA **Discussion and Update on:** □ Task 4C.1.c-e checklist Public Webmap □ Future Conditions Update **Exposure and Vulnerability Assessment Draft Results**

TASK 2 FLOOD RISK ANALYSES

1% & 0.2% Floodplain Maps

Technical Memorandum

- Due March 7, 2022
- Show gaps in inundation boundary mapping
- Exposure Analysis
- Vulnerability Analysis

Public Input / Public Meeting

- □ 1% & 0.2% Floodplain Maps
- □ Web maps with links on Region 15 webpage

Δ

EXISTING CONDITIONS FLOOD HAZARD Map 4

FATHOM data is approximate flood boundary not based on detailed engineering analysis

Existing Condition Floodplain Quilt 100-Year Floodplain 500-Year Floodplain

The current effective 500-year floodplain is an appropriate approximation for the future 100-year floodplain

Consider the opportunity for inclusion of existing data and studies that have analyzed future flood risk when amending the plan as part of the additional funding allocation.

FUTURE 500-YEAR DETERMINATION

- Considerations
- Increased rainfall may increase floodplain extents
- Varying floodplain widths dependent on stream size
 and topography
- Limited mapping outside the 500-year floodplain
- Limited available "future" modeling and results
- Recommendation Existing 0.2% + buffer becomes Future 0.2%
 - Obtain a general understanding of future flood risk
 - <u>Not</u> a regulatory product

Also applies to
Future 100-year
determination

APPLYING THE BUFFER - TRIBUTARIES

Three Potential Options

	Advantages	Disadvantages
Option 1: No tributary buffer	Tributary buffers may differ and removes assumptions	May not necessarily reflect future conditions for the tributaries
Option 2: Same buffer for main stems and tributaries	Uses available information	Floodplain buffer could be different from the main stems since detailed hydraulic modeling is not available.
Option 3: Differing buffer for tributaries	Most accurate option	Large data gaps – no data on the tributary buffer
		8

FUTURE FLOOD BOUNDARIES

What are other regions doing?

Region	Future 1% Floodplain	Future 0.2% Floodplain
Lower Brazos	Existing 0.2%	Existing 0.2% + (Delta or Buffer)
Trinity	Existing 0.2%	Existing 0.2% + (Delta or Buffer)
Neches	Existing 0.2%	Existing 0.2% + (Delta or Buffer)
Sabine	Existing 0.2%	Existing 0.2% + (Delta or Buffer)
Guadalupe	Existing 0.2%	Existing 0.2% + (Delta or Buffer)
San Jacinto	Existing 0.2%	Existing 0.2% + (Delta or Buffer)

FUTURE CONDITIONS FLOOD HAZARD Map 8

FATHOM data is approximate flood boundary not based on detailed engineering analysis

Future Condition Floodplain Quilt
100-Year Floodplain
500-Year Floodplain

EXISTING CONDITIONS FLOOD HAZARD- GAPS IN INUNDATION BOUNDARY MAPPING & KNOWN FLOOD PRONE AREAS Map 5

This identifies needed FMEs (Task 4A)

Existing Flood Hazard Gaps Fathom - Mapping Not Model-Backed

FUTURE CONDITION FLOOD HAZARD- GAPS IN INUNDATION BOUNDARY MAPPING AND KNOWN FLOOD PRONE AREAS Map 9

This identifies needed FMEs (Task 4A)

> Future Flood Hazard Gaps Fathom - Mapping Not Model-Backed

- Exposure analysis to identify who and what might be harmed within the region for the 0.2% and 1% storm events
 - Existing development
 - Future development
 - Flood mitigation projects in construction
 - Critical infrastructure
 - Low water crossings at risk of flooding
- Utilize a GIS intersect to determine structures in the future flood quilt

- Utilize previously developed flood exposure dataset
- Include *existing* structures in the future conditions hazard areas
- Identify critical infrastructure

EXISTING CONDITIONS FLOOD EXPOSURE Map 6

Dense

Sparse

County	Number of Structures in Floodplain
Brooks	1,541
Cameron	43,804
Dimmit	807
Edwards	150
Hidalgo	88,471
Jim Hogg	1,625
Kenedy	2,014
Kinney	1,896
Maverick	6,239
Starr	13,957
Val Verde	3,565
Webb	24,486
Willacy	6,055
Zapata	4,504
TOTAL	199,114

FUTURE CONDITION FLOOD EXPOSURE Map 11

County	Number of Structures in Floodplain
Brooks	2,820
Cameron	93,880
Dimmit	1,382
Edwards	262
Hidalgo	155,860
Jim Hogg	3,032
Kenedy	3,770
Kinney	3,205
Maverick	10,004
Starr	22,013
Val Verde	5,210
Webb	37,981
Willacy	9,903
Zapata	8,126
TOTAL	357,448

EXISTING CONDITIONS VAL VERDE **VULNERABILITY AND CRITICAL INFRASTRUCTURE** Map 7

County	Average SVI of features in floodplain or flood prone areas
Brooks	0.903
Cameron	0.808
Dimmit	0.982
Edwards	0.488
Hidalgo	0.836
Jim Hogg	0.899
Kenedy	0.753
Kinney	0.748
Maverick	0.935
Starr	0.888
Val Verde	0.766
Webb	0.817
Willacy	0.869
Zapata	0.975
TOTAL	0.833

Social Vulnerabil Buildings withi 100-Year Flo	ity Index of n Existing odplain
Q Critical Facilities	• 0.67 - 0.84
• 0.29 - 0.47	• 0.84 - 0.93
• 0.47 - 0.67	• 0.93 - 1.00

80

FUTURE CONDITION VULNERABILITY AND CRITICAL INFRASTRUCTURE Map 12

Average SVI of features in floodplain County or flood prone areas Brooks 0.9056 Cameron 0.8099 Dimmit 0.9824 Edwards 0.4704 Hidalgo 0.8265 Jim Hogg 0.8985 Kenedy 0.7528 Kinney 0.7483 Maverick 0.9388 Starr 0.8717 Val Verde 0.7509 Webb 0.8032 Willacy 0.8559 Zapata 0.9755 TOTAL 0.8279

 Social Vulnerability Index of Buildings within Future 100-Year Floodplain

 ♥ Critical Facilities
 0.67 - 0.84

 • 0.29 - 0.47
 • 0.84 - 0.93

 • 0.47 - 0.67
 • 0.93 - 1.00

EXTENT OF INCREASE OF FLOOD HAZARD COMPARED TO EXISTING CONDITION

Map 10

FATHOM data is approximate flood boundary not based on detailed engineering analysis

EXTENT OF INCREASE OF FLOOD HAZARD COMPARED TO EXISTING CONDITION

Map 10

FATHOM data is approximate flood boundary not based on detailed engineering analysis

PUBLIC WEBMAP FOR COMMENTS

iedras Negras

Sabinas

Comments Webmap Link

Web Map Instructions/Data disclaimer/Acknowledgements

The floodplain quilt is a compilation of data from multiple sources and is intended to approximate the extent of existing flood risk in the Lower Colorado Region. This data layer is for planning purposes only and is not to be used for any regulatory activities. For regulatory floodplain maps, contact your local floodplain administrator or visit the FEMA Map Service Center at msc.fema.gov.

I agree to the above terms and conditions

Map Information X About Web Map Instructions Find address or place Q The searchbar feature in the upper left corner of the map enables you to zoom to a particular address. Image: Corner, you can add points with comments to help identify areas with flooding concerns. You may add as many features as needed.

Similarly, the Add Feature tool enables you to add or change information about the points features you have already created.

The legend below shows the different layers Legend

Public Input

New Braunfels

87

Kinasvill

77

Corpus Christi

San Antonio

Balcones Escarpment

Nuevo Laredo

nas Hidalgo

🥐 Community Comment

Public Comment

Lower Rio Grande RFPG Boundary

Lower Rio Grande Flood Quilt

100 Year Floodquilt

•

500 Year Floodquilt

23

COMMENTS WELCOMED.

